-
Aguilar Carrillo, Rafael Ignacio
info
Enginyer en Informàtica per la Universitat Centroccidental Lisandro Alvarado (UCLA). Actualment treballa com a enginyer de programari a l'equip de GlovoMaps a Glovo. És mentor en enginyeria de programari per a organitzacions i individus. Disposa de més de deu anys d'experiència en diferents empreses transnacionals en àmbits com la logística, el retail, el real state i les consultores de programari.
-
Albors Zumel, Laia
info
Graduada en Ciència i Enginyeria de Dades per la Universitat Politècnica de Catalunya (UPC), màster en Visió per Computador per la Universitat Autònoma de Barcelona (UAB). Actualment, està fent el doctorat en el departament de Teoria del Senyal i Comunicacions de la UPC, i està duent a terme la seva tesi doctoral sobre l'ús eficient de tècniques de deep learning per a la detecció i identificació d'espècies de fauna i flora. Anteriorment, ha treballat al Barcelona Supercomputing Center (BSC), en el grup de Emerging Technologies for Artificial Intelligence en un projecte conjunt amb CaixaBank.
-
Anglada Rotger, David
info
Candidat a doctorant en Processat d'Imatge Mèdica per la Universitat Politècnica de Catalunya (UPC). Màster en Advanced Mathematics and Mathematical Engineering per la UPC. Graduat en Matemàtiques i Ciència i Enginyeria de Dades pel Centre de Formació Interdisciplinària (CFIS) per la UPC. Actualment, assistent a la recerca en el projecte Digipatics, pel desenvolupament d'algorismes d'intel·ligència artificial pel processat d'imatges histopatològiques, en col·laboració amb l'Institut Català de la Salut (ICS).
-
Bach Ramírez, Josep Maria
info
Cap de dades i intel·ligència artificial a Codegram Technologies, de la qual també és cofundador. Té una trajectòria de més de dotze anys en la indústria com a enginyer de software autodidacta. Actualment treballa en la intersecció entre intel·ligència artificial i indústria, amb especial interès en les xarxes neuronals profundes i el processament del llenguatge natural.
-
Cardoso Duarte, Amanda
info
Doctora en Teoria del Senyal i Comunicacions per la Universitat Politècnica de Catalunya (UPC). Màster en Enginyeria Informàtica per la Universidade Federal do Rio Grande (FURG - Brasil). Actualment, AI4S Fellow i Cap d'equip d'intel·ligència artificial al Barcelona Supercomputing Center (BSC), lidera projectes que integren AI/ML en tasques de ciències de la Terra. Amb formació en aprenentatge multimodal, traducció de llenguatge de signes i aplicacions d'IA relacionades amb el clima, ha contribuït a les principals iniciatives de recerca europees com ara els projectes Destination Earth i Horizon Europe.
-
Carós Roca, Mariona
info
Màster en Enginyeria de Telecomunicació per la Universitat Politècnica de Catalunya (UPC), especialitzada en multimèdia (DL sobre visió, parla i text). Va treballar a Telefónica com a Data Scientist desenvolupant models DL per a la detecció d'anomalies a les xarxes. Actualment està cursant el seu doctorat a la Universitat de Barcelona (UB) en modelatge de dades LiDAR per a aplicacions ambientals, en col·laboració amb l'Institut Cartogràfic i Geològic de Catalunya (ICGC). També és membre de Young IT Girls, una organització sense ànim de lucre per animar les nenes a realitzar estudis tecnològics.
-
Caselles Rico, Pol
info
Enginyer de Telecomunicació per la Universitat Politècnica de Catalunya (UPC) i màster en Tecnologies Avançades de Telecomunicació per la UPC. Actualment és estudiant de doctorat a la UPC i col·labora amb l'Institut de Robòtica Industrial (IRI). Treballa a Crisalix Labs en l'àmbit de la reconstrucció en 3D amb aprenentatge profund. Va centrar el seu treball de grau en la predicció de la prominència, a l’Insight Centre for Data Analytics de Dublín, i el treball final de màster en l'estudi de l'espai de pesos dels models neuronals, a la Universitat de St. Gallen de Suïssa.
-
Escolano Peinado, Carlos
info
/
Doctor en informàtica per la Universitat Politècnica de Catalunya (UPC) i màster en Intel·ligència Artificial per la UPC. Actualment és investigador al grup de tecnologies del llenguatge del Barcelona Supercomputing Center (BSC), així com professor associat al departament de Ciències de la Computació de la UPC. La seva àrea d'experiència és el processament del llenguatge natural, especialment la traducció automàtica multilingüe amb xarxes neuronals.
-
Fojo Àlvarez, Daniel
info
Graduat en Matemàtiques i en Enginyeria Física pel Centre de Formació Interdisciplinària Superior (CFIS) i màster en Matemàtiques Avançades i Enginyeria Matemàtica. Machine learning engineer a Lace Lithography.
-
Gállego Olsina, Gerard Ion
info
/
Investigador al Barcelona Supercomputing Center (BSC) i doctorand al Departament de Teoria del Senyal i Comunicacions de la UPC. Màster en Tecnologies Avançades de la Telecomunicació per la Universitat Politècnica de Catalunya (UPC), especialització en Deep Learning for Multimedia Processing. Ha realitzat estades de recerca a empreses multinacionals (Apple, Amazon i Dolby), on ha treballat en Large Language Models (LLM) i processament de veu.
-
Giardina, Claudia
info
/
Màster en Ciències de la Computació per la Facultat Politècnica de la Universitat Nacional Asunción (UNA). Enginyera en Electrònica Mèdica per la Facultat Politècnica de la UNA. Especialista en Didàctica de lEducació Superior per la UNA. Actualment estudiant doctoral al Departament de Teoria del Senyal i Comunicacions de la Universitat Politècnica de Catalunya (UPC), treballant en un projecte d'intel·ligència artifical aplicada a imatges mèdiques.
-
Gómez Duran, Paula
info
Màster en Advanced Telecommunication Technologies (MATT) per la Universitat Politècnica de Catalunya (UPC). Actualment està cursant un doctorat en Sistemes de Recomanació Contextuals a la Universitat de Barcelona (UB). Acumula tres anys d'experiència en temes de programació full-stack (Visual Engineering) i investigació en diferents camps d'intel·ligència aritificial, tant a universitats com a la Universitat de Barcelona o la UPC, com a entitats com l'Insight SFI Research Centre for Data Analytics, Telefonica Research i TV3. Recentment ha realitzat una publicació sobre el Graph Convolutional Embeddings for Recommender Systems.
-
Hernández Pérez, Carlos
info
/
Estudiant de doctorat a la Universitat Politècnica de Catalunya (UPC). Té un profund interès en la intel·ligència artificial i en els beneficis que aquesta tecnologia pot aportar pel futur de la nostra espècie. Se centra sobretot en el seu ús per a aplicacions mèdiques, però també li agrada utilitzar-la amb finalitats artístiques.
-
Jiménez Martín, Lauren
info
Estudiant de doctorat al Departament de Teoria del Senyal i Comunicacions de la Universitat Politècnica de Catalunya (UPC), amb finançament FI AGAUR 2022. Llicenciada en Ciències de la Computació per la Universitat de l'Havana. Ha aplicat anteriorment tècniques de machine learning per restaurar imatges mèdiques. Actualment, prepara la seva tesi doctoral sobre l'aplicació de deep learning per resoldre problemes mèdics en imatges histopatològiques, especialment l'estudi d'Attention i Transformers.
-
Nieto Salas, Juan José
info
Grau en Enginyeria de Telecomunicació per la Universitat Politècnica de Catalunya (UPC) i màster de Data Science per la UPC. Ha realitzat pràctiques utilitzant tècniques de deep learning i reinforcement learning a l'Insight Centre for Data Analitycs i a Telefónica. Actualment treballa com a Data Scientist a Glovo.
-
Pardàs Feliu, Montserrat
info
Doctora enginyera de Telecomunicació per la Universitat Politècnica de Catalunya (UPC). Catedràtica del Departament de Teoria del Senyal i Comunicacions de la UPC i membre de l’Intelligent Data Science and Artificial Intelligence Research Center (IDEAI-UPC). Ha dirigit projectes de recerca i de transferència de tecnologia en l'àmbit del processament d'imatge i vídeo i la visió per computador, àmbits en els que publica a nivell internacional. Ha estat investigadora visitant a Lucent Technologies (Bell Labs) i a Toshiba's Cambridge Computer Vision Research Lab.
-
Pina Benages, Oscar
info
Estudiant de doctorat a la Universitat Politècnica de Catalunya (UPC). Màster en Tecnologies de Telecomunicació Avançades, menció en Deep Learning for Multimedia Processing. La seva investigació se centra en self-supervised graph representation learning i la seva aplicació al processament d'imatge mèdica, concretament en el camp de la histopatologia digital.
-
Rafieian, Bardia
info
Estudiant de doctorat i investigador al Departament d'Informàtica de la Universitat Politècnica de Catalunya (UPC). Màster en Enginyeria de Programari i Mineria de Dades per la Universitat Qazvin Azad (QIAU). Actualment treballa a Bechained.ai al camp de les operacions d'aprenentatge automàtic (MLOps) duent a terme recerca i desenvolupament en integració de programari, optimització d'energia, sistemes de recomanació, processament del llenguatge natural (PLN) i predicció de sèries temporals. Té set anys dexperiència en mineria de dades i PLN i cinc anys en aprenentatge automàtic i integració de programari.
-
Tarrés Benet, Laia
info
Graduada en Enginyeria de Telecomunicació per la Universitat Politècnica de Catalunya (UPC), màster en Tecnologies Avançades de la Telecomunicació per la UPC. Ha participat en múltiples projectes d'aprenentatge profund amb el Grup de Processament de la Imatge de la UPC. Actualment, està fent el doctorat a la UPC i està duent a terme la seva tesi doctoral sobre l'aplicació de transforms en llengua de signes. Anteriorment, ha participat en projectes que han consistit en la detecció de lesions a la pell i la coloració d'imatges històriques en blanc i negre, utilitzant deep learning. També ha fet internships a Amazon Research Alemanya.
-
Triginer Garcés, Gil
info
Doctor en Física Atòmica i Làser per la Universitat d’Oxford i Enginyer de Telecomunicacions per la Universitat Politècnica de Catalunya (UPC). El 2019 es va incorporar a Crisalix Labs com a investigador d’aprenentatge profund (DL), centrat en l’aplicació de tècniques de DL per a la reconstrucció en 3D.
-
Ventura Royo, Carles
info
Doctor en Computer Vision per la UPC. Actualment és professor d’estudis d'Informàtica, Multimèdia i Telecomunicació a la Universitat Oberta de Catalunya (UOC), on imparteix assignatures d’intel·ligència artificial, aprenentatge computacional i visió per computador. La seva recerca se centra en la visió per computador: detecció i segmentació d’objectes i segmentació d’imatges. És membre del grup de recerca Artificial Intelligence for human WELLbeing (AIWELL) de la UOC.
-
Vilaplana Besler, Verónica
info
/
Doctora en Anàlisi de la Imatge per la Universitat Politècnica de Catalunya (UPC) i màster en Matemàtiques i màster en Informàtica per la Universitat de Buenos Aires (Argentina). És professora associada al Departament de Teoria del Senyal i Comunicacions de la UPC on imparteix aprenentatge profund, aprenentatge automàtic i visió per computador. Membre de l’Intelligent Data Science and Artificial Intelligence Research Center (IDEAI-UPC). La seva recerca se centra en l’aprenentatge automàtic, l’aprenentatge profund i les aplicacions en imatge mèdica i teledetecció.